Implementing and Evaluating the Digital Turn in Estonian Schools: from Spectacular to Fundamental

Mart Laanpere, sen.researcher @ Centre for Educational Technology, Tallinn University

Conference on Data Science and Social Research :: Naples, 19 February, 2016

Spectacular vs fundamental

Huberman (1980) 'Recipes for Busy Kitchens': educational innovations tend to "spend too much time on spectacular at the expense of fundamental"

ICT/E-learning strategies in Estonia

1:1 computing, Computerisation, ICT integration, E-textbooks, E-learning, OER, internet competencies Pilot schools ICT innovation SCHOOLS LLL strategy Tiger Leap Tiger Leap + Learning 2014-2020 Tiger strategy strategy strategy 2003 2006 2009 2000 1997 2014 **EDUCATION** HITSA **E-university E-VET** consortium foundation consortium HIGHER ESF-funded programs: OER, First e-courses Digital competences in WebCT e-courses, staff training infrastructure, resources

Technology generation shifts

Estonian Strategy for Lifelong Learning 2014-2020: action plan for Digital Turn

- Digital turn in formal education system: digital culture into curricula, bottom-up innovation, sharing good practice, educational technologists in schools
- → Digital learning resources: digital textbooks, OER, quality management, recommender systems
- Digital infrastructure for learning: 1:1 computing, BYOD, interoperable ecosystem of services, mobile clients, schoolwide digital turn (first in 20 pilot schools, then in others)
- Digital competences of teachers and students: competence models, self-assessment tools, mapping with course offerings and accreditation procedures, updating initial teacher education curricula

Digital infrastructure in Estonian schools

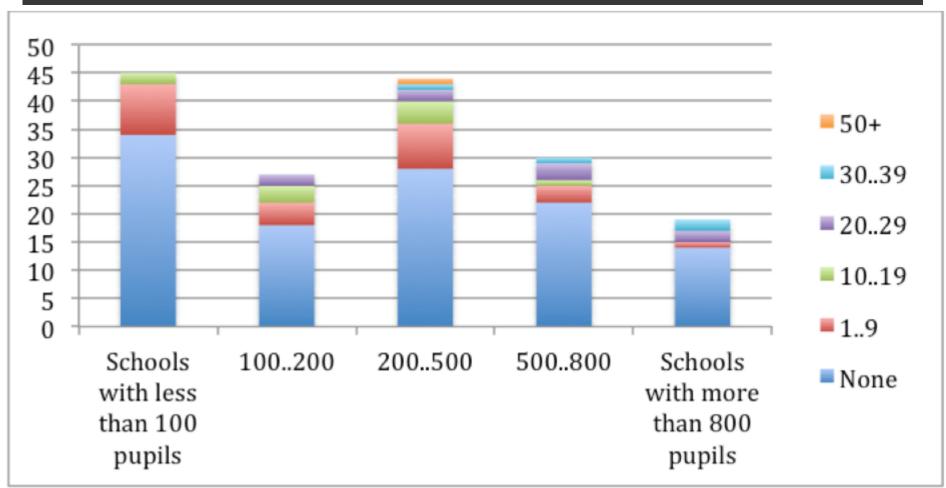
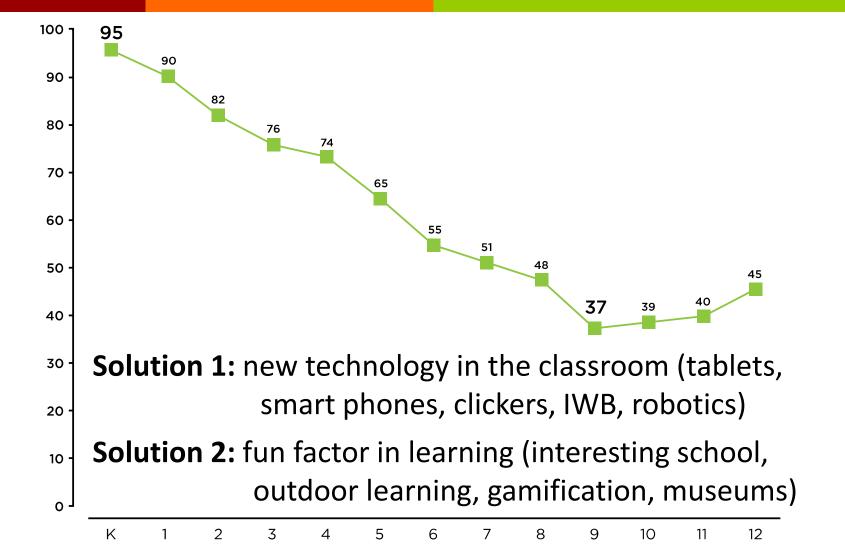
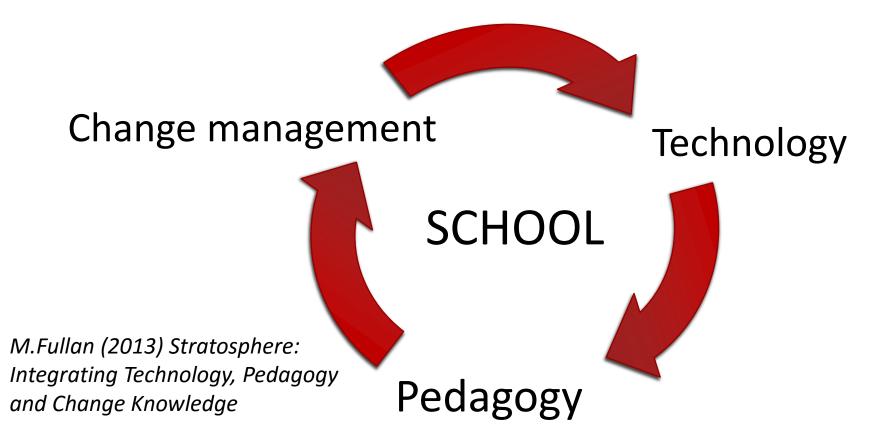
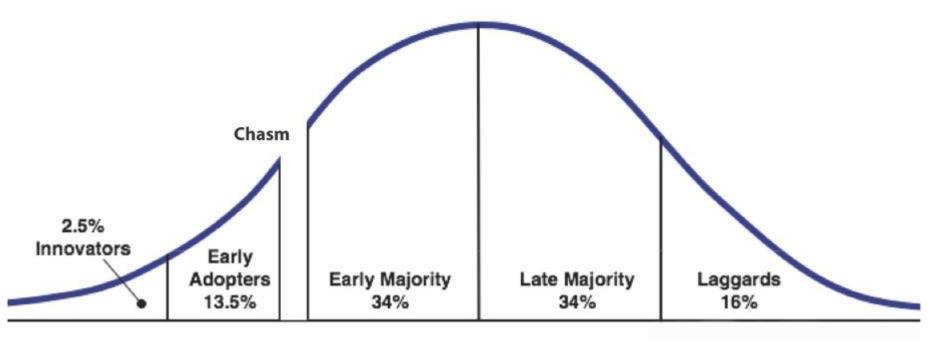



Figure 8. Availability of tablet computers in schools.


Erasmus+ project Creative Classroom: school survey 2014

Loss of enthusiasm at school


Technology and fun are not enough

Successful educational innovation requires combination of three forces on the school level:

Change management: whole school turn

Technology Adoption Life Cycle

- 7 The training and support is oriented on the level of a teacher
- Diffusion of innovations (Rogers, 1992), OECD study (2002)
- Whole school intervention models are needed

Pedagogical change

- The Club of Rome (1979) From reproductive learning to innovative learning (anticipation, participation)
- Metaphors of learning (Paavola & Hakkarainen):
 - MONOLOGICAL: learning as **aquisition** of knowledge
 - **▶ DIALOGICAL: learning as participation** in community of practice
 - TRIALOGICAL: learning as collaborative **knowledge creation** resulting with shareable digital artefacts

Old and new pedagogies

Teacher Pupil Tech use Pedagogical plo capacity Content Master required Content knowledge content Ubiquitous technology New Discover and master content together

Create and use new

knowledge in the world

Outcome:

mastery

Outcome:

Deep learning

Pedagogical

capacity

(Fullan 2013)

Innovation models in education

- Macro-level innovation management: national strategy, related programs, national curriculum, changes in regulations (assessment, textbooks), quality assurance
- Micro-level innovation: teachers networks, professional development, competitions, projects
- Often overlooked meso-level innovation model:
 - Whole-school policies and change management
 - Inclusive management, learning from each other
 - Learning organisation, double loop learning (Why, How, What)
 - Success stories: Waldorf schools, Schools with Distinction

Samsung Digital Turn pilot schools

Five scenarios for tablet classrooms

- **Flipped classroom**: learning in advance of the lesson from short videos and other resources, making sense and applying new knowledge during the lesson (Khan Academy)
- Inquiry-based learning: learning like scientists do, by questioning, exploring, explaining, (in)validating
- Project-based learning: collaborative creation of digital artifacts
- **Problem-based learning**: solving, then designing problems (tasks)
- Game-based learning: learning from playing and designing games (e.g. Quest2Learn school NY)

Digital Mirror: assessing digital maturity

- An online tool for self- and peer-assessment of school's digital maturity
- Three dimensions of digital maturity:
 - Digital infrastructure (1-1 computing, BYOD, Wifi, support)
 - Pedagogical innovation (learning environment & resources, roles)
 - Change management (whole school policies, learning organisation)
- 5-point assessment scale (from iTEC innovation maturity model):
 - Exchange: teaching approach is not changed
 - Enrich: technology supports differentiated learning
 - Enhance: teaching and learning are re-designed
 - Extend: ubiquitous technology, learner takes control
 - **7** Empower: beyond institutional boundaries, learner as co-author

Digital Mirror

Conclusions

- Schools are overwhelmed by surveys that only ask for data without giving anything back
- Digital Mirror is a data collection tool that supports teachers and school administration in implementing double-loop learning and becoming a learning organisation
- Meso/school-level innovation model is often overlooked, yet very powerful in focusing on fundamental rather than spectacular side of innovation